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SUMMARY

The state of the art for the application of linear stability theory and the

e n method for transition prediction and laminar-flow-control design are summa-

rized, with new analyses of previously published low-disturbance, swept-wing

data presented. The major difficulty was found to be the paucity of detailed

information regarding stream and wall disturbances and their receptivity within

the boundary layer. For any set of transition data with similar stream distur-

bance levels and spectra, the en method for estimating the beginning of tran-

sition worked reasonably well; however, even within a given data set, the value

of n could vary significantly, evidently depending upon variations in distur-

bance field or receptivity. For data where disturbance levels were high, the

values of n were appreciably below the usual average value of 9 to ]0 obtained

for relatively low disturbance levels. It is recommended that the design of

laminar-flow-control systems be based on conservative estimates of n and that,

in considering the values of n obtained from different analytical approaches

or investigations, the designer explore the various assumptions which entered

into the analyses.

INTRODUCT I ON

The continuing and deepening shortage of natural petroleum resources has

placed increased emphasis upon viscous drag reduction. For conventional take-

off and landing (CTOL) transport aircraft, turbulent skin-friction drag is typi-

cally on the order of 50 percent of the total cruise drag (ref. ]), and the

fraction is much larger for many hydrodynamic applications. For vehicles (or

portions thereof) having moderate Reynolds number (]00 x ]06 or less), applica-

tion of laminar flow control (LFC) could provide significant increases in fuel

efficiency (ref. 2). (See fig. ].) For attached flows, LFC can be obtained

by one or a combination of methods including the following: suction, heating

in water, cooling in air (Mack's first mode disturbances), favorable pressure

gradient (in two-dimensional or axisymmetric flows), and convex curvature.

Several of these approaches have experimentally yielded laminar flow in the

Reynolds number range of 50 x ]06 (e.g., ref. 3). This range of Reynolds number

is approximately an order of magnitude greater than the "uncontrolled" transi-

tion location and is sufficient to be of interest in such applications as air-

craft wings and some submersibles.

The purpose of the present paper is to summarize, from an engineering

point of view, the state of the art of linear stability theory and the e n

method for the prediction of boundary-layer transition and LFC design on swept

wings. The following quote from reference 4 interjects the proper perspective

regarding the use of linear stability theory for estimating boundary-layer

transition:

At any speeds, the rational approach to prediction of transi-

tion probabilities depends strongly on the relative roles of



the linear and nonlinear processes leading to transition. If,

for a given design, the linear [process7 . . . should correspond

to a major portion of the roads to turbulence, then stability

theories would provide us with an invaluable tool. Should

there be some bypass of the theoretical models . . . these must

be fully charted, experimentally (and/or theoretically with

accurate non-linear theory) before the linear tool can be used

in its, thus circumscribed, domain of applicability.

In the present work, the relationship between linear stability theory and tran-

sition will be reviewed and then the LFC application will be discussed. Using

linear stability theory and the e n method, new analyses of some existing

limited swept-wing data will be presented and discussed.
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SYMBOLS

amplitude of boundary-layer disturbance

amplitude of boundary-layer disturbance at point of neutral stability

lift coefficient

static pressure coefficient

suction rate coefficient, -(PV)o/p u _

wing chord measured parallel to free-stream direction

disturbance frequency

Mach number

logarithmic exponent of integrated amplitude (amplification) ratio,

e n = A/A O

fluctuating static pressure

free-stream Reynolds number based on wing chord

free-stream Reynolds number based on distance in chordwise direction

free-stream Reynolds number based on momentum thickness

surface overheat temperature difference

velocity parallel to free-stream direction

mean fluctuating velocity in free-stream direction

suction velocity normal to surface
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distance measured in chordwise direction

distance at point of neutral stability

distance normal to chord

angle of attack

Falkner-Skan pressure gradient parameter

boundary-layer displacement thickness

boundary-layer momentum thickness

leading-edge wing sweep angle

disturbance wavelength

pressure gradient parameter,

@2 du

dx

viscosity

density

angle of line normal to disturbance wavefront and measured relative

to free-stream direction

nondimensional disturbance amplification (growth rate)

Subscripts:

crit

max

O

T

position above which disturbances become unstable

maximum

wall

beginning of transition

free stream

APPLICATION OF STABILITY THEORY TO TRANSITION

PREDICTION FOR TWO-DIMENSIONAL FLOWS

Transition Process

Several excellent reviews have summarized the relationship between sta-

bility theory, transition, and the known physical processes occurring in the



transition region for the two-dimensional, zero-pressure-gradient case (e.g.,

refs. 5 to 13). This transition process is indicated schematically in figure 2.

(See also fig. ] of ref. 11.) Stream and wall disturbances are somehow inter-

nalized by the boundary layer (i.e., Morkovin's "receptivity" problem) and then

selectively amplified by the viscous flow. Depending upon the nature and level

of the disturbances, this amplification can be either linear or nonlinear. The

four most important elements in the transition process are (I) the stream and

wall disturbance environment (". transition occurs because of disturbances

and not just as a result of an unstable boundary layer" (ref. ]4)), (2) the

receptivity of these disturbances, (3) their subsequent growth, and (4) break-

down into wall "turbulence." Conventional stability theory treats only a por-

tion of one of these elements (i.e., item (3)), and for linear theory to be

applicable, items (]) and (2) must result in relatively weak disturbances.

Application of Stability Theory

The major problem in the application of stability theory to the prediction

of transition is the extreme lack of detailed knowledge concerning stream and

wall disturbances and the receptivity process. The mean viscous-flow develop-

ment, required as input to stability theory, can now be calculated (using numer-

ical methods and digital computers) for quite general cases. Also, the sta-

bility theory itself has now been generalized to include three-dimensional

(ref. ]5) and nonparallel effects (refs. ]6, ]7, and ]8). Experiments indicate

that nonlinear effects originate at amplified disturbance levels on the order of

0.5 to ] percent, and if the initial (internalized) disturbance levels in the

viscous flow are unknown, then one does not know how much or over what distance

the linear disturbances amplify before becoming nonlinear.

Approaches to the problem of relating stability theory to transition

include the Reynolds stress method of Liepmann (ref. 19), the well-known e n

method (refs. 20 and 2]), and the modified e n and amplitude methods of Mack

(refs. 6, 14, and 22). The e n method is the only one of these methods which

does not directly require a knowledge of the initial disturbance amplitude

level. However, the actual n value does depend upon the free-stream distur-

bance level, as shown, for example, by Mack (ref. 74!. Also, as has been noted

many times, the e n method generally gives correct trends for the influence

of various mean profile modifications on the disturbance growth (e.g., wall

suction/cooling, pressure gradient, etc.).

The e n method, where

_x T
i

n = log (A/Ao) = _ (linear amplification rate) dx

X o

for the most amplified disturbance frequency, works fairly well for a given

set of two-dimensional data, but typically n for transition varies between

data sets, becoming smaller and more uncertain as the background disturbance
level increases.



There are at least three distinguishable types of two-dimensional/
axisymmetric experiments which tend to group the n values for transition. At
the upper end, with n values of 0(]5), are sailplanes (ref. 23); here the dis-

turbance field is extremely low (i.e., no propulsion sound field and low unit

Reynolds number with corresponding decreased roughness sensitivity). The middle

group, the famous e 9 data (refs. 20, 2], and 24 to 26), comes from more usual

flight experiments where some propulsion noise is present and the unit Reynolds

number is higher; other disturbances such as insects, surface irregularities,

ice clouds, and dust, however, are still "subcritical." Also included in this

e 9 data are results from low disturbance (u' _ 0(0.05 percent)) laboratory

facilities. The third set of data (e.g., fig. 7 of ref. 20) is centered about

n = 5 and comprises results from "conventional" (u' _ 0(0.5 + ] percent))

facilities. For even larger disturbances such as seen by turbine blades and

propeller wake regions, the n values may even approach zero or transition can

occur "subcritical." It should be noted that the most important disturbance

level is the disturbance energy near the critical frequency. A large rms fluc-

tuating level may, in fact, have low amplitude critical levels, depending upon

the spectra. The consensus as to why the en method seems to correlate a given

set of data is that for a relatively low disturbance level at the most amplified

frequencies, most of the amplification is, in fact, linear; the nonlinear por-

tion is relatively short. (See refs. ]0 and ]] and fig. 3.)

The obvious result from this discussion is that the en method is only as

good (for data extrapolation) as our knowledge of the particular disturbance

field involved. As Mack states in reference 6, ".. . any transition criterion

of an empirical nature can only be valid for a very specific disturbance envi-

ronment." There are two additional cautions on the e n method. First, a value

such as nine for transition represents the average of a number of data points

and must be treated as such for design. In the e 9 "data set," individual n

values can vary appreciably, even for the same flight or facility and on the

same model from day to day. Therefore, a design must be based upon a conserva-

tive approach (e.g., n _ 7) once the disturbance field, receptivity, and mean

flow details are known to be within the purview of the e 9 data set. The sec-

ond caution concerns the direct comparison of n values from one calculation/

investigation with those from another. The final n value for specific transi-

tion data is a function of the various assumptions which entered into the calcu-

lation (i.e., whether the mean flow was assumed similar (typical of earlier

work) or nonsimilar, whether nonparallel effects were included in the stability

theory and, if included, which particular terms were actually used). An addi-

tional possible source of discrepancy is whether spatial or temporal theory is

employed. If temporal theory is used, then some velocity, generally the group

velocity, is required to convert the results to the spatial case. In some of

the older work, the phase speed was used rather than group velocity.

The results of figure 4 (taken partially from fig. 5 of ref. 27) illustrate

the difficulty that can arise from using stability results without evaluating

the underlying assumptions that went into the analyses. The transition data

shown were obtained in flight on the two-dimensional, unswept airfoil of the

"Snark" airplane (ref. 28). Superficially, the figure indicates that the e 9

method grossly underpredicts the transition data in adverse pressure gradients.

Unfortunately, a "similar" boundary-layer analysis was used in reference 27 to

evaluate the validity of the e 9 method; in fact, the e 9 curve shown was



taken directly from reference 20, which developed curves for exactly "similar"
adverse pressure gradient flows on two-dimensional wedge-type geometries (con-
stant 1 flows). The boundary-layer flow on the Snark airfoil was "nonsim-
ilar;" R0 built up in the forward, favorable pressure gradient (stable)
region, with the actual extent of large adverse pressure gradient being quite
limited. (See fig. 21 of ref. 28.) Using a current nonsimilar analysis to
evaluate the e9 method yields a significantly more accurate prediction of the

Snark data and a contradictory conclusion regarding the applicability of the e 9

method to adverse pressure gradient flows. For the case where le, T _ -0.06

(_Rc = 3 x 106 , C L = 1.07, and Re, T _ 780), the nonsimilar analysis using the

e 9 method predicted R@, T _ 680, whereas the similar analysis predicted

R@, T _ 135; for e ]3, the nonsimilar analysis predicted R@, T _ 780. This

example should serve as a caution against indiscriminate use of "magic plots"

such as figure 5 (taken from ref. 29); each case should be individually studied

by using advanced tools such as the Sally (ref. 15) or TAPS (ref. 30) computer

codes.

DISTURBANCES, RECEPTIVITY, AND APPLICATION OF

STABILITY THEORY TO LAMINAR FLOW CONTROL

There is a fundamental difference in philosophy between using stability

theory for prediction of transition location and for design of optimized LFC

systems. In the LFC case the flow can, and indeed must, be kept in the linear

range. Once flow fluctuations have amplified into the nonlinear range, most

of the LFC devices (suction, heating/cooling, etc.) lose much of their effi-

ciency. For example, less overall suction is used if disturbances are kept

small, rather than letting them grow fairly large and then reducing their ampli-

tude with increased amounts of suction. ] This discussion presupposes knowledge

of the fact that, in an LFC system, it is usually extremely inefficient to keep

the flow stable. Some growth must be allowed to obtain maximum benefit; how-

ever, the question is how much growth (as computed by stability theory) should

be allowed. In contrast to this "linearized" LFC case, the conventional transi-

tion prediction scenario involves at least some nonlinear growth, as the flow

eventually undergoes transition.

The application of stability theory to the LFC problem would appear to be

straightforward. In order to avoid the nonlinear growth region, one selects a

design criterion at least an order of magnitude lower than conventional transi-

tion criteria. (See fig. 3.) For the e 9 data set, which for two-dimensional

flows should probably be e 7 to account for inherent uncertainty (data scatter

caused at least partly by variations in background disturbances and receptiv-

ity), one should "back off" to approximately e 5 to ensure linear growth. The

possible problem with even this conservative number is still the level, spectra,

and nature of background and internalized disturbances. Having previously

established the first-order importance of stream and wall disturbances (and

]This information was obtained in a private communication with Werner

Pfenninger, The George Washington University Joint Institute for Advancement

of Flight Sciences at NASA Langley Research Center, Hampton, Virginia.



their receptivity) on the application of stability theory to LFC, the types of
disturbances which must be considered in LFCdesign will be briefly examined.

Disturbance Environment

The following list illustrates the manypossible stream and wall distur-
bances that are important in LFCapplications. Note, however, that stability
theory is not applicable whenthese disturbances are supercritical (i.e., when
they are sufficiently large to promote instantaneous boundary-layer transi-
tion). Typical references discussing each of these indicated problem areas
(i.e., refs. 3] to 67) are also provided.

I. Roughness(refs. 36, 42, 49, and 6] to 64)
Insect remains
Discrete
Continuous
Twodimensional
Three dimensional
Steps
Gaps
Particle impact/erosion
Corrosion
Leakage

II. Wall Waviness (refs. 55, 59, and 67)
Two dimensional
Three dimensional
Single wave
Multiple wave
Distortion under load

Aerodynamic
Hydrodynamic
Sun/heat

III. Surface and Duct Vibration (refs. 33 and 58)

IV. Acoustic Environment (refs. 2], 37, 40, 4], 43, 48, 5], and 59)
Attached flow
Separated flow
Propulsion system
Vortex shedding

V. Stream Fluctuations and Vorticity (refs. ]3, 4], 42, 44 to 47, 50, 52
to 54, 56, 57, and 59)
Propeller wakes
Oceansurface
Body wakes

Fish
Aircraft

High shear areas

Weather fronts



Jet stream edges
Oceancurrents

VI. Particles (refs. 32, 65, and 66)
Ice clouds
Rain
Algae
Suspensions

VII. LFC-SystemsGenerated Disturbances (refs. 3], 34, 35, 38, 39, 59,
and 60)
Vortex shedding (blocked slots, holes, pores)
Acoustic or chugging
Pore disturbances
Nonuniformities

Although the length and complexity of the previous list of "spoilers" for
the en method (or any stability theory approach) is alarming, an even more
serious problem arises from the fact that the influence or relative dominance
of any of these disturbances is a function of (]) wavelength, frequency, wave
orientation, and amplitude of that disturbance (also whether linear or nonlin-
ear), (2) the simultaneous presence and nature (spectra, amplitude) of other
disturbance types (these do not generally appear alone but in combinations of

various strengths and the number of possible combinations is obviously quite

large), and (3) the history of the mean viscous flow as it is influenced by

the usual modifiers such as surface curvature, pressure gradient, surface

mass transfer, wall temperature, and unit Reynolds number.

Except for a few restricted instances (see, for example, ref. 8), these

disturbances are not yet directly included into stability theories, and their

forced normal-mode solutions are not yet available. Hence, one is reduced to

the uncomfortable state of having to experimentally examine the tolerance of

one's scaled mean-flow history to each of the applicable disturbance sources.

(Note that the specific areas of concern are of course dependent upon the

actual LFC application mission.) This procedure can be quite expensive since

the requisite tests must be conducted with extreme care in special facilities

and is made even more questionable by (]) the possible further destabilization

of disturbance mode combinations, (2) our relative ignorance concerning actual

disturbance levels in flight, and (3) the ever present possiblity of "new prob-

lems" (ref. ]]) such as the spanwise contamination problem encountered in flight

on the X-2] (ref. 59).

To finish this section on a more optimistic note, much of the actual flight

and open ocean experience with various types of LFC has been more favorable than

the ground facilities tests would indicate. (Recall that this has already been

indicated in the previous discussions of the effects of disturbances on n

values for the e n method.) Note the following quote (circa ]940) on flight

results obtained on unswept wings with extended regions of laminar flow

(ref. 68): "These (flight) tests have demonstrated that marked turbulence

effects exist even in the (NACA) low turbulence tunnel (in early configuration,

not down to "final" u' level), with the result that the drag increase with

Reynolds number is shown by all wind tunnel tests to occur at much too low a

8



Reynolds number. The practical result is that the airfoils now appear useable
at a Reynolds numberof the order of twice that previously thought to limit
their usefulness." Another interesting example comes from the X-2] program.

Figure 6 (taken from ref. 69) indicates that considerably higher noise levels

(approximately 5 to 7 dB higher) could be tolerated in flight than in wind-

tunnel experiments. This may be at least partially due to the relative absence

of small-scale stream vorticity fluctuations in the flight situation (a possible

example in the wind tunnel of degradation of criteria due to presence of multi-

ple disturbance modes). As a final example, the following quote is taken from

the abstract of a Soviet paper documenting an LFC flight suction experiment

(ref. 70) on a remotely piloted vehicle with a two-dimensional airfoil:

Due to smallness of the disturbances acting in free flight

as compared with a wind tunnel, the laminar part of the

boundary layer is larger .... Hence the use of suction

in free flight requires a smaller suction rate for obtain-

ing the same size of the laminar zone.

Laminar Flow Control on Swept Wings

As an illustrative example of the application of stability theory to LFC,

consider the transonic swept-wing case, which is of current interest to the LFC

element of the NASA ACEE program (ref. 7]). Compared to the straight wing,

the swept-wing situation has two additional problems, both due to the three-

dimensional nature of the mean flow. The first problem, originally defined by

Owen and Randall (ref. 72), involves formation of stationary, approximately

streamwise disturbance vortices in the regions of both adverse and favorable

presssure gradient. These vortices are predictable by three-dimensional sta-

bility theory and, fortunately, are relatively easily stabilized by suction

(ref. 59). They occur because of inflection points in the boundary-layer cross-

flow velocity profiles. The second problem on the swept wing is the possibil-

ity of spanwise contamination along the leading edge, from either the turbulent

fuselage boundary layer or large disturbances in the leading-edge region. When

examining swept-wing transition data, it should first be determined whether this

spanwise contamination problem is present; otherwise, the inferred n values

could be quite low and erroneously interpreted. Several techniques exist for

dealing with this spanwise contamination problem (ref. 59).

Although amenable to control by suction, the swept leading-edge cross-

flow region generally requires considerably more suction for LFC than the

two-dimensional situation at the same Reynolds number. The work of Srokowski

and Orszag (ref. ]5) has shown that an e n type method could be applied to

the swept-wing case. In the present paper, the e n approach for swept wings

will be examined using a larger data set than examined in reference ]5. Most

of the available low-disturbance swept-wing transition data is sumarized in

table I (refs. 73 to 98) and includes wind-tunnel and flight data. The

Cranfield data (entry ]), the 33 ° Northrop wing (entry 6), and the Michigan

test (entry 4) have not previously been analyzed by the e n method. Entries 2

and 3 were examined in reference ]5; entry 3 was also studied in reference 23.



The application of the en method for two-dimensional cases is relatively
straightforward. The integration is carried out in the downstreamdirection and
the frequency is fixed. This constitutes a well-posed stability problem. How-
ever, the three-dimensional case is another matter, with several fundamental
difficulties. The first difficulty occurs because there are now three rather
than two variables (I, f, and 4, rather than just _ and f) and thus the
direction which should be used to integrate the disturbance growth for applica-
tion of the en method is uncertain. This problem arises because stability

theory is not a solution to the initial value problem. Various approaches to

overcoming these problems have been used. Reference ]5 advocated the "envelope"

method, where the frequency is fixed and the orientation and wavelength are

simultaneously optimized to give the maximum local growth at that frequency.

Several frequencies are examined until a global maximum is found, with spatial

integration occurring in the direction of the real part of the group velocity.

The Sally code of reference ]5 has since been modified to include other options

such as "fixed wavelength and frequency" and "fixed orientation and frequency."

Other approaches include integrating in the direction of the local potential

flow (refs. 23 and 99) and solution of a kinematic wave packet equation

(ref. ]00). Recently, Nayfeh (ref. ]0]) has derived the propagation condition

that d_/d8 must be real (here e and _ are defined as the wave number com-

ponents in the streamwise and spanwise directions, respectively). Private com-

munications with S. G. Lekoudis at Lockheed-Georgia Company and with A. Nayfeh

of Virginia Polytechnic Institute and State University indicate that the results

using the Nayfeh expression are quite similar to the envelope method (ref. ]5).

The second difficulty associated with applying the e n method to swept

wings concerns the variegated nature of the disturbance development over the

airfoil. Modern "supercritical" type airfoils and, to a lesser extent, older

airfoil designs, have a region of relatively small pressure gradient in the mid-

chord region on the upper surface. This acts as a Tollmien-Schlichting (T-S)

disturbance growth region which separates cross-flow regions (with different

cross-flow directions) in the front and rear portion of the airfoil. The

assumption made in reference ]5 was that disturbances generated in the forward,

cross-flow dominated region (for A large) do not influence the T-S growth,

and, in turn, the T-S waves do not affect the cross-flow disturbance growth in

the rearward region. This simplification is probably acceptable except for two

cases: (]) where the "upstream" disturbances grow large enough to exert a non-

linear, profile-modifying influence and (2) for the transonic case, where the

T-S waves have an oblique orientation. This latter possibility should be

checked, but no suitable transonic swept-wing transition data are yet available

(except perhaps for the X-2] data) due to the large disturbance levels, both

vortical and acoustic, which exist in conventional transonic tunnels. NASA

Langley Research Center is currently involved in an effort to develop and con-

duct transition tests in a low-disturbance transonic tunnel.

APPLICATION OF e n METHOD TO LOW-DISTURBANCE SWEPT-WING DATA

Although the e n method has severe limitations due to current unknown fac-

tors such as free-stream disturbances and their receptivity within the boundary

layer, the question remains as to whether the e n method can be used as a

design tool for estimating transition and hence suction rates, and distributions

]0



for laminar flow control in the cross-flow region on swept, tapered airfoils.
This section will explore results obtained using an advanced version of the
Sally stability theory code (ref. 15) to analyze the integrated amplification
ratios (i.e., "n" factors) for four sets of low-disturbance, swept-wing data.
The advancedSally code included improvements to make the code user oriented
and versatile: 40 percent less memory, 45 percent less run times, and addi-
tional options for calculating local disturbance growth rates. Results
obtained using two of the local growth rate options (i.e., the envelope method
and the fixed wavelength/frequency method) will be presented and discussed.
(See ref. 15 for a discussion of these methods.) In addition to the previous
results of reference 15, the data analyzed herein will include two sets of
flight data, one without suction and the other with suction (entries I and 7
in table I), and two sets of wind-tunnel data, both with suction (entries 4
and 6 in table I). Full-chord laminar flow was obtained in each of the suction
data sets; hence, the intent of the present analyses is to comparethe calcu-
lated n values for these data with those determined for data without suction
where transition occurred (i.e., the Cranfield data (ref. 76) and the Amesdata
(ref. 85)). Results of the present analyses are summarized in table II.

Cranfield Data

Transition data were analyzed for eight flights (u = 46.3 to 56.7 m/sec)
of a large, untapered, untwisted, unsucked 45° swept half wing mounted as a
dorsal fin upon the mid-upper fuselage of an Avro Lancaster airplane (refs. 73
to 76). The airfoil section wasmadeup of two semiellipses, one of which con-
stituted a faired or foreshortened trailing edge and the other corresponding to
the leading-edge portion of a ]0-percent-thick airfoil with "effective" chord

of 3.3 m measured in the free-stream direction. A sketch of the wing section

with the measured pressure distribution for the cases analyzed is presented in

figure 7. Calculations were performed to the estimated beginning of transition.

Since the transition data in reference 76 represented the end of transition, it

was necessary to estimate where the beginning of transition occurred for compar-

ison with the stability analyses. Using the limited surface pitot pressure dis-

tributions given in reference 76 to indicate how transition was defined, the

ratio of the beginning of transition to the end of transition XBT/XET was

determined to be XBT/XET - 0.54 and is used in the present analysis.

The integrated cross-flow instability amplification ratios obtained from

both the envelope method and the fixed wavelength/frequency method for the cases

analyzed are presented in figures 8 and 9, respectively. Table II summarizes

the maximum n factors obtained for these Cranfield data, as well as those

found in reference 15 for the Ames swept-wing wind-tunnel data. The major

result from the present analysis of the Cranfield data is that although the n

factors vary significantly from 7.6 to 11 for the envelope method and from 6.1

to 9.2 for the fixed wavelength/frequency method, they are completely consistent

with those obtained in reference 15 for the Ames data. The average of the n

values for the Cranfield data using the envelope and fixed wavelength/frequency

approaches are 9.7 and 7.2, respectively; for the Ames data, they were 10.1

and 6.9, respectively. The average of both the Cranfield flight and Ames wind-

tunnel data is 9.8 for the envelope method and 7.2 for the fixed wavelength/

frequency method. This result suggests that the background disturbance levels

11



in the very best low-disturbance wind-tunnel experiments maynot be all that
different from those found in moderately good flight experiments even though
the sources of the background disturbances are quite different (at low speed).

Another interesting result of the present calculations is shown in fig-
ure ]0. In contrast to the results of reference ]5 where the most amplified
cross-flow instabilities occurred at frequencies very near or equal to zero, the
most spatially amplified instabilities found for the Cranfield data occurred at
significantly higher frequencies for both the envelope and fixed wavelength/
frequency methods. Therefore, caution is advised when trying to find the most
unstable frequency; the most unstable frequency should not be assumeda priori
to be zero but is a function of the meanboundary-layer profile and how it was
developed.

Typical stability characteristics obtained with the envelope and fixed
wavelength/frequency analyses are shownin figures ]] and ]2 for the case of

= 2° and Rc = 9.5 × ]06 . As expected for both analyses, the local distur-
bance amplification rate _i grows to a maximumin the wing leading-edge region
and then decreases. Another interesting result for the envelope method is that
the most amplified wavelength l/c for each chordwise position changesby a
factor of 3 even though the cross-flow wave-orientation angle relative to the
free-stream direction _ changes very little. In contrast, for the fixed
wavelength/frequency method, the wave angle _ changes significantly from
approximately 77° at the leading edge to 86° at transition. The variation in
disturbance wave angle could possibly be used as a discriminator in an experi-
ment to sort out the actual physical-growth processes.

Northrop X-2] Data

Figure ]3 presents a typical pressure distribution and equivalent area
suction distribution representative of a Northrop X-21 flight case (refs. 95
to 97), where full-chord laminar flow was obtained for Rc = 22.5 × ]06 at a
Machnumberof 0.8 and a lift coefficient of 0.3. Integrated disturbance ampli-
fication ratios obtained using both the envelope and fixed wavelength/frequency

analyses of these data are shown in figures ]4 and 75; also shown is the sensi-

tivity of the n factors to suction level. Note that Cq, o represents the
"quoted" minimum flight suction level and distribution as shown in figure ]3(b);

the suction values of 0.85Cq, o and 0.70Cq, o have the same distribution as

Cq, o but have levels that are reduced by ]5 and 30 percent, respectively.

Another important point that should be noted prior to discussing the analysis

of these transonic data is that compressibility is not included in the present

stability calculations, and hence, integrated amplification rates obtained for

the trailing-edge regions could be too large by approximately ]4 to 40 percent;

Mack (ref. ]00) has shown compressibility to be important in determining the

values of n for the trailing-edge cross-flow region of transonic airfoils.

The e n method of analysis herein is being used as a diagnostic tool to exam-

ine the X-2] data to see if anything unusual may have occurred since these data

represent the only swept-wing transonic data available.

Examination of figures ]4 and ]5 for the quoted flight suction distribution

reveals that the integrated amplification ratios on the X-2] airfoils are sub-
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stantially lower for both stability analyses than those previously found for
either the unsuckedAmeswind-tunnel data (i.e., ref. 15 and table II) or the
unsuckedCranfield flight data. For the envelope method, the maximum n for
x/c < 0.5 was 0.8 and for x/c > 0.5 was 1.5 at a frequency of 250 cycles/sec;
the fixed wavelength/frequency method produced a maximum n of 1.5 for
x/c > 0.5 and found no amplified instability for x/c < 0.5 at a frequency
of 250 cycles/sec and a wavelength of 0.00]5. It can be postulated that such
effects as compressibility, radiated boundary-layer noise from the attached
flow on the fuselage, vibration, and noise associated with (I) possible unsteady
separated flow regions downstreamof the canopy, (2) propulsion and suction
engines, and (3) slot suction system mayhave exacerbated the cross-flow stabil-
ity problem and forced an extensive amountof suction to be used to maintain
full-chord laminar flow. This postulation, coupled with the fact that the X-21
local suction levels and distributions were not directly measured, led to an
analysis of the growth sensitivity to suction level.

Reducing the level of the suction had a profound influence upon the com-
puted n factors, as seen in figures 14(a) and 15(a), for frequencies and
wavelengths that produced maximumintegrated amplification ratios at the air-

foil trailing edge. A reduction of 15 percent in the level of suction pro-

duced an increase in n from 0.8 to 2.6 for x/c < 0.5 and from 1.5 to 5.8

for x/c > 0.5 using the envelope analysis. An additional 15-percent reduction

in suction level increased these n factors to 5.2 for x/c < 0.5 and 12.1 for

x/c > 0.5. Similar behavior was obtained for the fixed wavelength/frequency

analysis for x/c > 0.5; however, for x/c < 0.5, no cross-flow instability was

amplified until the suction level was reduced to below 85 percent of the quoted

flight value. Although compressibility, vibration, and noise may very well have

been severe problems on the X-21 flight, the present analyses show that the

integrated amplification ratios are extremely sensitive to level of suction and

that small changes in suction can cause large changes in integrated amplifica-

tion ratios.

Figures 14(b) and 15(b) illustrate the sensitivity of the maximum inte-

grated amplification ratios with frequency. For both the envelope and fixed

wavelength/frequency analyses, the sensitivity of the maximum n factor with

frequency increases as the suction level is reduced for x/c > 0.5; the maximum

n factors occur at or near a frequency of zero. However, for x/c < 0.5, the

maximum n factors are relatively insensitive to frequency changes, particu-

larly for the envelope method. These results reinforce the caution given in

the analysis of the Cranfield flight data; that is, when looking for the most

amplified frequencies, do not assume a priori the influence of frequency on the

maximum integrated amplification ratios.

Ames 33 ° Swept-Wing Data

In the low-drag, boundary-layer suction experiments (refs. 91 to 95), a

33 ° swept wing having a 3-m chord and an unsymmetric 15-percent-thick airfoil

suction was tested at the NASA Ames 12-Foot Pressure Wind Tunnel. Full-chord

laminar flow was obtained up to chord Reynolds numbers of 29.6 x 106 for con-

figurations with chordwise slots in the leading-edge region and spanwise slots

downstream of the leading-edge region. Because transition at higher Reynolds
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numberswas evidently a result of disturbances originating at the suction slots
due to wake-flow oscillations caused by the high slot Reynolds number (greater
than ]20) in the slots in the adverse pressure gradient region, the current
analysis is focused only on the data at lower Reynolds numberswhere full-chord
laminar flow was obtained at Rc = 29.6 x ]06 . The pressure and suction distri-
butions used in the analysis are shownin figure 16 for a free-stream velocity
of 30 m/sec and an angle of attack of ].5 ° . The suction levels for this inves-
tigation are approximately equal to those designated "S]" in the analysis of the
Ames30° swept wing which achieved full-chord laminar flow at Rc = 23.7 x ]06
(ref. ]5).

Figure ]7 presents integrated disturbance amplification ratios obtained
by the envelope analysis for a stationary cross-flow instability (i.e., f = o)
and for a frequency of 250 cycles/sec. These frequencies were found to give the
most amplified disturbances over the rearward and forward sections of the air-
foil, respectively; the stationary cross-flow instability was significantly
more amplified over x/c > 0.5 than the f = 250 cycles/sec instability; how-
ever, for x/c < 0.5, the higher frequency was the more amplified. The maximum
n of 3.5 at the airfoil trailing edge for the current analysis is in very good
agreement with that found in reference ]5 for the Ames30° swept wing with com-
parable suction levels (e.g., n _ 3.9). It should be noted that these suction
levels mayhave been much larger than necessary.

Figures ]8 and ]9 show the variation in maximumintegrated amplification
ratios with frequency for both the envelope and fixed wavelength methods. The
trends with frequency for both methods agree with those found for the X-2] data
(i.e., the maximumintegrated amplification ratios over the rearward adverse
pressure gradient are more sensitive to changes in frequency than those over the
front half of the airfoil). A more important result, shownin figure ]9 for
the fixed wavelength/frequency, is that the most amplified wavelengths over the
front half of the wing are significantly smaller than those over the rearward
half of the airfoil. It is also interesting to note that the maximum n value
obtained by the fixed wavelength/frequency method over the rearward portion of
the 33° swept wing (n = 2.9) is approximately equal to that found in the anal-
ysis of the Ames30° swept wing for suction "S]" in reference ]5 and that this
maximumoccurs for a stationary cross-flow instability having a wavelength of
approximately 0.00]5 in both cases.

Michigan 30° Swept-WingData

Full-chord laminar flow was obtained up to chord Reynolds numbersof
]].8 x ]06 in these experiments on a 30° swept wing having a 2.]-m chord
and a symmetric ]2-percent-thick airfoil section (modified NACA66-0]2 sec-
tion). Suction was applied through 86 fine slots from 25-percent chord to
95-percent chord. The data analyzed in the current report achieved full-chord
laminar flow at Rc = ]0.6 x 106 for a free-stream velocity of 76 m/sec and
angle of attack of 0°. The pressure and suction distributions used in the
present analysis are shownin figure 20. The suction distribution shown is
a faired representation so as to avoid discontinuities that would result in
computing difficulties.
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Figure 21 shows the integrated amplification ratios over the airfoil sur-
face for various frequencies using the envelope method. The important result
shownin this figure is the level to which the instabilities grow before becom-
ing damped; n factors between 9.0 and 11.3 were found for frequencies up to
500 cycles/sec. The reason for these large integrated amplification ratios is
probably (1) the relatively low levels of suction comparedwith those used in
the X-21 and the Ames30° and 33° swept-wing cases and (2) the suction being
initiated far from the leading edge, which resulted in cross-flow instabilities
close to the leading edge being amplified to relatively large levels before
suction was applied. The suction levels indicated were the minimumnecessary
to keep full-chord laminar flow; experimental observations in reference 86 con-
firm this hypothesis as turbulent bursts were observed relatively far forward
on the airfoil at _ = 0° and Rc = 107.

Figures 22 and 23 show the sensitivity of the maximumintegrated amplifi-
cation ratios to changes in frequency over the wing surface using the envelope
and fixed wavelength/frequency analyses. For both analyses, the maximum n
factors occur at frequencies other than the zero-frequency stationary cross-
flow modeand are relatively sensitive to changes in frequency except for wave-
lengths less than 0.001. Maximum n values from the fixed wavelength/frequency
analysis (see fig. 23) follow the sametrend as those determined by the envelope
method and approach the average value of n for transition (n = 9 to 10) as
determined in the present analysis of the Cranfield flight and Ameswind-tunnel
swept-wing data without suction. (See table II.)

SummaryRemarks

Oneproblem area not addressed in the current analyses of the available
data is the question of whether the maximum n factors for transition are
different for the forward and rearward portions of the swept wing, as suggested
in reference 15. Reference 15 concluded from its analysis of the Ames30° swept
wing with suction and full-chord laminar flow that the allowable integrated
amplification ratios over the rearward portion of the wing may be lower than
those for the forward portion of the wing. This conclusion is not substantiated
by the current analysis of the X-21 data and the Ames33° swept-wing data. For
both of these sets of data, the calculated amplification ratios over the rear-
ward portion of the wings were equal to or greater than those obtained over the
forward portion of the wing. The difficulty is that there are essentially no
low-disturbance data available for swept wings where transition occurred beyond
the midchord region; hence, the only information available is for airfoils with
suction, and manyof these either have full-chord laminar flow or slot distur-
bances that cause premature transition.

The calibration of the en method for cross-flow transition prediction is
far from complete. The current analysis has explored the application of the en
method to someof the very few relatively high quality and detailed swept-wing
experiments. Further definitive experiments are a necessity for a meaningful
calibration of the method.
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CONCLUDINGREMARKS

The state of the art for the application of linear stability theory and
the en method for boundary-layer transition prediction and laminar-flow-
control (LFC) design has been sumarized, and results of advancedstability
analyses of previously published low-disturbance swept-wing data have been pre-
sented. A major problem was found to be the paucity of detailed information
concerning stream and wall disturbances and their receptivity within the bound-
ary layer. For any particular set of two-dimensional or swept-wing data with
similar stream disturbance levels and spectra, the en method for estimating
the beginning of transition works reasonably well; however, even within a given
data set, the value of n mayvary significantly, evidently depending upon

currently uncontrollable variations in disturbance field or receptivity.

Limited low-disturbance flight and wind-tunnel transition data for swept

wings were correlated reasonably well using advanced stability analyses and

the e n method. Average values of n at transition, determined using the

envelope and fixed wavelength/frequency analyses, were 9.8 and 7.2, respec-

tively. A major implication fr_ these results is that the background distur-

bance levels in the very best low-disturbance, low-speed, wind-tunnel experi-

ments may not be significantly different than those found in moderately good,

low-speed, flight experiments, even though the sources of the disturbances are

quite different.

The calibration of the e n method for swept-wing, cross-flow transition

prediction is far from complete. Very few high quality, low-disturbance, swept-

wing experiments have been conducted; further definitive experiments are essen-

tial for a meaningful evaluation and calibration of the e n method. Design of

LFC systems should currently be based on conservative estimates of n because

of (]) the inherent uncertainty in the available data due to variations in back-

ground disturbances and receptivity and (2) the need to maintain disturbance

growth rates in the linear growth region for efficient LFC system operation.

The selection of n for transition may not be that critical, however, for the

LFC design process since, as shown herein, small changes in suction have large

effects on disturbance growth.

Langley Research Center

National Aeronautics and Space Administration

Hampton, VA 23665

February ]5, ]980
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TABLE I .- SU_4ARY OF LOW-DISTURBANCE SWEPT-WING TRANSITION DATA

Authors and

references Configuration Measurements Comments and results

Burrows, Allen,

Walton,

Landeryou,

Porter, Trayford

(refs. 73 to 79)

Pfenninger, Gault,

Gross, Bacon,

Russell, Tucker

(refs. 80 to 83)

Boltz, Kenyon,

Allen (refs. 84

and 85)

Pfenninger,

Bacon, Gross,

Tucker (refs. 86

and 87)

Hyde

(ref. 88)

Carlson,

Pfenninger,

Franco, Bacon

(refs. 90 to 94)

Stark, et al.

(refs. 95 to 98)

Dorsal fin mounted on upper fuse-

lage of Avro Anson, Lancaster,

or Lincoln aircraft; wing sweep

of 42°35 ' and 450; initially no

suction; later, slot suction

30 ° swept wing (NACA 66-0]2)

with 93 spanwise suction slots;

tested in Ames ]2 Foot Pressure

Wind Tunnel; ].9-m chord

Variable sweep (A from 10 ° to

50 O) NACA 642A015 wing without

suction in Ames ]2 Foot Pressure

Wind Tunnel; ].2-m chord

30 ° swept, NACA 66-0]2 wing with

slot suction in 5- by 7-Foot

University of Michigan Tunnel;

2.]-m chord

Dorsal fin mounted on upper fuse-

lage of Avro Lancaster aircraft;

40 ° swept (quarter-chord station),

tapered, RAE ]02 symmetric airfoil

without suction; coordinates given

in reference 89

33 ° swept wing, ]5-percent thick,

with spanwise suction slots tested

in Ames ]2 Foot Pressure Tunnel

30 ° swept wing with spanwise

suction slots tested on Northrop

X-2]A aircraft

Surface pitot;

boundary-layer

profiles; sur-

face pressures

Surface pressure;

suction distri-

bution; wake

surveys;

microphones

Surface pres-

sure; micro-

phones (for

transition

detection);

surface hot

wires

Surface pres-

sure; suction

distribution;

wake surveys

Surface pressure;

boundary-layer

profiles

Surface pressure;

microphone data

Wake surveys;

microphone

data; hot film

Well documented, an

excellent set of experi-

ments with sweep;

essentially 3 separate

studies: (1) ].2-m chord,

unsucked, Avro Anson

(ref. 75); (2) 2.2-m chord,

unsucked, Avro Lancaster

(ref. 76); (3) 2.5-m

chord, tapering to ].7 m,

slot suction, Avro Lincoln

(ref. 78); transition

given as a function of

R c , 5, span

Contoured end plates

used; airfoil coordinates

given; achieved full-

chord laminar flow

with suction to

R c = 29 x ]06

Surface waviness

measured; transition

location was a func-

tion of fan blade

angle, sound level

in tunnel; study was

well documented;

transition Reynolds

numbers to ]5 × 106

This wing later tested

in Ames tunnel (refs. _

and 82); transition

Reynolds numbers to

]2 x ]06

Chord tapers from 2.4 m

down to 1.3 m; surface

pressures tabulated and

plotted; experiments

actually in another in

Cranfield series and

came between references 77

and 78; transition

onset essentially in

agreement with Owen

and Randall criterion

Slots/surface finish

may not be optimized;

surface pressure had

spatial oscillation

around x/c - 0.00;

wing was also tested in

Norair 7- by ]0-Foot Wind

Tunnel (ref. 9]);

transition given as a

function of Rc; transi-

tion Reynolds numbers

tO 40 x I06

Detailed knowledge of

local suction rates

evidently lacking;

some estimates available

(e.g., page 42 of

ref. 95)_ transition

Reynolds numbers to

47 x ]06
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TABLE If.- COMPARISON OF INTEGRATED AMPLIFICATION RATIOS

FOR SWEPT-WING WIND-TUNNEL AND FLIGHT DATA

Data source
A,

deg
R c (x/c) T

Ames swept-wing 30 ]6.] < 106

tunnel experi- 30 12.3

ments, no suc- 40 I0.6

tion (refs. 80 40 8.4

to 85) - analysis 20 22.4

from reference 15

Cranfield flight 45 9.5

experiments, no 45 11.7

suction (ref. 76) 45 9.5

45 11.7

45 9.5

45 9.5

45 11.7

45 9.5

X-2] data, suction 30 22.5

(refs. 95 to 97)

Ames 33 ° swept 33 29.6

wing, suction

(refs. 90 to 94)

Michigan 30 ° swept 30 10.6

wing, suction

(refs. 86 to 87)

Envelope method

n
cps

0.190 0 9.6

.490 0 10.3

.370 0 ll.5

.500 0 9.7

.370 0 9.2

0.120

.070

.090

.045

.040

.090

.055

.090

750 10.6

lO00 10.8

500 10.3

1400 11.0

I000 8.6

750 8.7

1250 7.6

750 9.7

Laminar 250 >1.5

Laminar 0 >3.5

Laminar 250 >11.3

Fixed wavelength/

frequency method

k/c 6, n
cps

I .................

r 0.00i25 0 6.8

i .00175 0 7.2

i .00225 0 6.8

0.00150 250 6.8

.001 00 750 6.8

.00125 500 7.5

.00!00 1200 9.2

; .00075 750 7.7

.00200 600 6.1

.00100 1000 6.2

i .00200 600 7.5

0.00150 250 >1.5

0.00150 0 >2.9

0.00300 I 250 >6.4

Case

identification

30C

30B

40D

40A

20E

a : 0°

_ = 00

e= 2°

e = 2 o

QI. = 4°

= -2 °

= -2 °

a = -4 °

C L = 0.3; Moo = 0.8

a = 1.5 °

_ = 00
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as function of shape factor (ref. 29).
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Figure ]0.- Influence of frequency on integrated amplification ratios at

transition for Cranfield 45 ° swept wing. _ = 00; R c = ]].7 × ]06 .
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Figure ]2.- Stability characteristics for Cranfield 45° swept wing by fixed

wavelength/frequency method. _ _ 20; Rc = 9.5 × ]06; l/c = 0.00]25;

f = 500 cps.
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Figure 13.- Pressure and suction distributions on Northrop X-2] wing. M = 0.8;

R c = 22.5 x ]06; and C L = 0.3.
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Figure ]4.- Sensitivity of integrated disturbance amplification ratios on

Northrop X-2] wing to suction level by envelope method.
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Figure 15.- Sensitivity of integrated disturbance amplification ratios on

Northrop X-2] wing to suction level by fixed wavelength/frequency

method.
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by fixed wavelength/frequency method.
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Figure 20.- Pressure and suction distributions on Michigan 30° swept wing.

u = 76 m/sec; R c = ]0.6 × ]06; e = 0°.
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Figure 17.- Integrated amplification ratios on Ames 33 ° swept wing using

envelope method.
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Figure 18.- Maximum integrated amplification ratios on Ames 33 ° swept wing

by envelope method.
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Figure ]9.- Maximum integrated amplification ratios on Ames 33 ° swept wing
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Figure 20.- Pressure and suction distributions on Michigan 30° swept wing.

u = 76 m/sec; R c = ]0.6 x I06; _ = 0o.
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